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Abstract

In this project, the main objective was to develop multiresolution wavelet algo-
‘rithm to study the flame acceleration and to understand the mechanism of the tran-
sition of deflagration to detonation. In the first half year of the proje(:t ‘The author
completed the study of two dimensional detonation waves based on hybrid high order
methods (a combination of high order Essentsally Non-oscillatory, (ENO) methods and
spectral methods and Shock Tracking methods). The result on the detonation waves
was published in the AIAA Journal. In the remaining time of the .two :years, first,
the author completed the theoretical and algorithmic studies of the adaptive wavelet
method, which could handle nonperodic boundary conditions and nonlinear time de-
.pendent PDE’s (The result was published in the SIAM Journal of Numierical Analysis).
Secondly, the author implemented the adaptive wavelet methods for the solution of one-
dimensional flame propagation; thirdly, the author developed a ‘Fortfa,n code WL2D
(more than 13,000 lines) for the two dimensional multi-scale wavelet: a.lgonthms with
an efficient data structure and implemented a second order 1mp11c1t fa.ctonzed scheme
for the adaptive wavelet methods.

ze Jovd SOTLYWIHLYW " g1b99ISYB.  ZE:68 BE61/89/10




1 Hybrid High Order Methods. for Detonat:on Waves

Partially supported by this grant, we completed the development of hxgh order hybrid nu-
merical simulation of two dimensional detonation waves. The major ﬁndmg of this work was
that the cellular structure of detonation waves depended very senmtwely on the numerical
dissipation of the algorithms representing detonation fronts.  Further stud1es of the work in
three dimensional ¢cases were needed to understand the three dlmensmnal effects of detona-
tion waves. One paper summarizing the results of this study was pubhshed in ATAA Journal,
Vol. 33, Number 3, pp 1248-1255.

2 Parallel Multi-scale Wavelet Algorlthms

In an attempt to design multiscale methods for the study of deﬂagratxon to detonatlon tran-
sition (DDT) problem, we constructed a wavelet collocation multi- resolutlon algorithm for
the initial value boundary problem of nonlinear PDE’s. The key component in this colloca-
tion method was a so-called “Discrete Wavelet Transform” (DWT) which aped a solution
between the physical space and the wavelet coefficient space. The DWT transformation only
took O(NI ogN ) operations where N was the total number of unknowns.’ Therefore, the non-
linear term in the PDE could be easily treated in the physical space;- and the derivatives of
those nonlinear terms then computed in the wavelet space. The wavelet, collocatlon methods
had the following advantages: (a) the capability to handle arbltra.ry non-peylodlc boundary
conditions; (b) the capability to treat general nonlinearity through. the collocations of the
PDE’s; (c) flexibility of adaptive meshing in regions where high gradients 'of solution occur
as in shock waves and turbulent premixed flames; (c) Capability of parallel and multi-grid
implementations .

The following paragraph summarizes the key technical detaxls of the algonthms One
paper containing some of the details of the results of this study was pubhshed in the Journal
of SIAM Numerical Analysis, Volume 33, Number 3, pp. 937-970, June 1996.

2.1 Discrete Wavelet Transform (DWT)

The Discrete Wavelet Transformation (DWT) maps between a functmn at its sample points
to the coefficients of its wavelet interpolation expansion. This transform in both direction
will only take O(NlogN), N = 29+ 4 L — 1 operations for the H2(J )-wa.velet basis.

Let f(z) in HZ(I), and we intend to construct a wavelet 1nterpolatxon .

Pifz)eVodWod W, -~ @ijor.]>0

First introduce two index spaces, for W;, 7 > 0 we define

» /Cj={—1,0,---,nj—2} (1)
where n; = DimW; = 2L and for V, we define
Koy ={-1,0,--:,L =3} " (2)

3
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Second, define the collocation points in domain I = [0 L] assocxated w1th wavelet space
W;,j 2 0 by R
) = k—-—%lé, kek; : :j"- S (3)

and for Vg the collocation points are : .
=k+2, kek, . ;:.::3 (4)

The interpolation operator Iy, f in V; interpolates f(z) on colloca.txon pomts {a:k )}kex_
while the interpolation operator I, f in W; interpolates any function. f(z) in H3(I) on

collocation points {zV )}kgx The construction of the mterpola.nt f a.nd 1y, £ involves the
inversion of a tridiagonal matrix with size dimW; = n;.or dimVp'= 'L'~-—~1 respectxvely
Now let us assume that the values of a functlon f(z) € H} (I) are: given on all the

collocation points {z(’)} ke K;,-1 <7< J, then the wavelet mterpola.tlon Pif(z) €
Vo Wea Wy - @ijorJ>Oxsdcﬁnedas :

5 : , .
Pif(z) = falz) + 3 fi(=). - ()
=0 [T '
such that o S
Prfal) = f(=),  forkeK,-1<i<Ui
where ) - ?"‘j:, ':\: e
falz) =If(z) = ) fasdor(z)eVo i
kek—y - ‘ '. . .
and for 7 > 0, _ SR
fj(z) = L-u,'(f(n - (Pj—lf)(J) Z ka"PJ, (6)

keK;

Let us denote f = (£(-1) £ ... fU)T the values of f(z) on all mterpolatmn points on
all levels, ) = {f(m(j))}ke,cj,j > —land f = (f(-1 fO) ... f(J))T the Wa.velet coefﬁments
in the expansion (5), f) = {f;x}iex,»7 = —1. SR

A fast discrete wavelet transform (DWT) was proposed for an. efﬁcxent transformation
between point values f and f with operation counts of order O(Nn N) in both directions .
The efficiency of the transformation is based on the fact that: 45_1 k(:c) zﬁ,,k(a:) k € K; form

a hierarchical nodal basis on all levels of collocation points {:c,, } —1 <. _7 < J keK;.

2.2 Wavelet Collocation Methods for PDE’s

We consider a collocation method based on the DWT transform for tlme dependent PDE’s.
Let u = u(z,t) be the solution of the following initial bounda.ry va.lue problem

U + fz(u) = ugs + g(u), zG[O L] t>0 '
u(0,t) = go(2)
BU(L,t) =91(t)
Bu(z,0) = f(z)

(7)
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where B is the boundary condition operator which could be either Dlnchlet boundary con-
ditions or Neuman type or Robin type boundary conditions.

The numerical solution us(z,t) will be represented by a unique decomp051t10n in the
cubic spline wavelet decomposition of H*(I) - Vo @ Wo & -+ @ Wy J2 0 ‘namely

us(z) = T yu(z) + uoy(z) + uo(z) + - +w(z) I (8)

~ where cubic spline I, ju(z,t) consists of the nonhomogenuzty of u(z, t) on both boundaries,
and the coefficients 4;.(t) are all functions of ¢t. Using the DWT transform, we can also

identify the nurmerical solution uj(z,t) by its point values on all collocatlon points, we put
all these values in vector u = u(t), i.e.

u=u(t)=(uM a0 . -~ ut)T

where u) = {u(z?,t)},k € K for j > —1.
To solve for thc unknown soluuon vector u(t), we collocate the PDE (7) on all collocation
points, then we have the following semi-discretized wavelet colIocatlon method

Semi-Discretized Wavelet Collocation Methods

uy: + fz(u'}) = UJe + g(“J)',.—zg)

Bu,;(0,t) = go(t) S
Buj(L,t) =gf(t) o (9)

us(z{),0) = (=)
where ke K; -1<j5< J.
Computation of fz(z{) = f,(us(z{)

(Sit;p 1 Given u = (u™9,uO@ ... uNT compute {9} = {f(u,(f))},ke K;,7 =2 —1 and
efine . S
f=(f-D £O ... fUNT,

Step 2 Compute the wavelet interpolation expansion using DWT tran'sfbfm for f as in (5)

Step 3 Differentiate the interpolation expansion and evaluate at all collocatlon points z(J)

which is taken as fz((z")) = fa(us(z{")).
The total cost of computing the derivatives will be (5J + 12)N < 5N log N.

2.3 Adaptive Meshing

In equations (8), us(z) is expressed using the full set of collocation pomts {:c(’ )} As most
of the wavelet expansion coefficients @, for large j can be ignored withina givén tolerance
&. So we can dynamically adjust the number and locations of the. collocatlon points used in
the wavelet expansions, reducing significantly the cost of the scheme whxle prOV1d1ng enough
resolution in the regions where the solution varies 51gn1ﬁcantly ' :

5
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Let € 2> 0 be a prescribed tolerance and j > 0, £ = Z(e) = mm( ~:]16g ¢/loga),a =
13.98. . L - :
Step 1. First locate the range for the index k,

(k1) (k) 1), m =m(3,€) VI T (10)
such that L S
|26 <€, ki<k<U, i=1,- o (11)
Step 2. Ignore @;4 in (8) for k; < k < l;i = 1,---,m, k = ki 4—2+3 L=0-f-3,
namely we redefine u;(z) as
ui(z) = X ﬂ:',k%,k( )
kEK\K :
where K; = UIS"S"‘ [k{, lg]. '
Step 3. The new collocation points and unknowns will be

{I(j)},UJ(I(J)) ke K—‘l lf] = --1 ke K; \K’ lf] > 0

2.4 Data Structure for Two Dimensional Adaptlve Wavelet Algo-
rithms S

We have developed an- efficient data structure for two .and three dlmensmnal wavelet ap-
proximations. Being an adaptive scheme in nature, an efficient data structure for handling
numerical solutions in a wavelet framework is the first step in makmg a. theoretlcal poten-
tial into real application. We have used sparse matrix data structure (compressed row and
compressed column vector technique) in treating the datastructure on .each wavelet space
W7 x WY in the case of two dimensional approximations. Such approach have the advantage
of only stonng the mesh points used in the adaptive wavelet approxxmatlons and easy access
to numerlcal data on each constant x and y lines for the numerical dlﬁ'erentlatnons

Data Structure - 1-D
One Dimensional Case:

w= {0, ... 40 )

€ %@Woewl@'“w.l :

) = {Ug)}ISkSn,-

where n; - number of mesh points on level W;

[1] pointer(j) - pointer of first element of u(J)

[2] npts(7) - number of elements in ul!) — n;

[3] indez(1 : n;) -"collocation point location indices
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Data Structure - 2~D

ZJ:‘.T.—I ny—-l ="'W;§x W’?y"'
Mesh on level (7z,7y) — I/sz xWE -

¢ Compressed Row Form :

i-th row:

lenrow(z, jz, jy) - length of i-th row

ipr(i, jz,jy) - pointer of 1st mesh on i-th row
icn(:, 7z, jy) - column indices of i-th row

e Compressed column Form :

i-th column:

lencol(i, jz, jy) - length of i-th row
ipc(i, 7z, jy) - pointer of 1st mesh on i-th row
irn(:, jz, 3y) - column indices of i-th row

2.5 Fast Time Integratlon Factorized ADI Wavelet Approach

On the issue of time integration, we have successfully zmplemented a second order implicit

factorized scheme of Beam and Warming type for the adaptive wavelet methods Unlike many

other adaptive methods (finite element and finite differerice), the. adaptlve wavelet methods

actually can be easily implemented using an ADI approach.: So,; solutmn ‘of the algebraic

systems from the implicit discretization of 2-dimensional diffusion. operators is replaced by

that of only 1-dimensional operators, thus speeding up the time: mtegratmns tremendously
Example: Beam Warming schemes for Euler Equa.tlons L :

Ou  OF(u)  0G(u)
ot + Oz + Oy

=0
(I+ %D,A“)(I + %szB’*)u"‘“

= (1= 50401 - 5D, B

D; and D, the wavelet derivatives.
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3 Computational Results of Multl-scale Wavelet Algo-
rithms for 2-D flames

We have developed a two dimensional code WL2D based on the adaptzve wavelet approx-

imations. The following eight pages summarize the simulation results of two dimensional

cellular and planner flame propagations.
{1] Two Dimensional Perturbed Cellular Flame

@t = A@—K%-{-Q

OC C,
Ct = T—K-T——Q

where A is the Laplace Operator Initial Condition:
T ]

© = (5)r+0(3)

1

C = (0-0)+ O(M.)

+ perturbation of flame fronts
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(2] Two dimensional Perturbed planar flames

ac
C: = T—Q .

where A is the Laplace Operator Initia] Condition:

O = expzifz<0
= 1ifz>0
C = 1-0

12
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6 Appendix: 2-D wavelet Computer CodeWLZD

18

SOILYWIHLYMW © oTpIeIShBL  ZEi6@ 8661/88/10




